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Abstract. The observation of a sharp cusp in the temperature derivative of the magnetic 
susceptibility dx/dT is often used as a signature of a second-order structural phase transi- 
tion. Such behaviour is particularly prominent in low-dimensional compounds undergoing 
a Peierls transition, where there is a large change in the density of states. Using general 
arguments borrowed from magnetism, we show that it is short-range order parameter 
fluctuations close to T, that lead to the observed behaviour of x ;  the addition of impurities 
produces rounding of the dx/dT cusp when the true phase transition is destroyed by 
disorder. The theory compares favourably with experiment. 

1. Introduction 

Sharp structure in the temperature derivative of the static magnetic susceptibility (x( T ) )  
has often been interpreted as a signature of a continuous structural phase transition. 
For example, ter Haar et al [l] used this method to determine the transition temperature 
(T,) of K,Cu,S,; similar measurements have been performed on TaSe, [ 2 ] ,  K,,MoO, 
(blue bronze) [3, 41 and 2H-TaSe2 [ 5 ] .  A variation in the susceptibility at a structural 
phase transition is not surprising, as the latter is accompanied by changes in the density 
of states. These changes will be greatest at metal-insulator transitions, particularly in 
the case of quasi-one-dimensional materials undergoing a Peierls transition [6]. Here, 
the driving force for a periodic structural distortion at wavevector Q is the strong 
nesting of the Fermi surface at Q = 2k,. In quasi-one-dimensional materials this will 
lead to the opening of a gap in the density of states at temperatures T < T,. 

Theoretically the behaviour of the magnetic susceptibility at a Peierls transition 
is not well understood in detail, particularly close to T, [3]. Here we will follow the 
notation of [3] and AeR is the so-called pseudo-gap. In this paper we shall study this 
question in the context of quasi-one-dimensional systems. The simplest model of x 
at a Peierls transition treats the electrons as a non-interacting free electron gas, and 
x is then proportional to g(e,), the density of states at the Fermi energy. By charge 
conservation arguments, ionic density fluctuations close to T, lead to variation in g(e,) 
and it is these effects which we would like to calculate. 

Historically the Peierls transition has been treated using a soft-phonon picture; 
here one phonon frequency w(Q) vanishes leading to the formation of a condensate at 
finite wavevector Q that reflects the new periodic order in the low-temperature phase. 
Because large anharmonicities are present for T - T, the single-phonon approximation 
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of Migdal’s theorem [7] is not valid, and diagrammatic calculations with phonon basis 
states become very complicated [8]. 

An alternative view to the soft-phonon picture is to consider the formation of 
a pseudogap above T, due to the presence of large critical fluctuations. Lee, Rice 
and Anderson (LRA) [9] have shown that in one dimension this approach leads to 
significant changes in x above the transition temperature. Here, the critical fluctuations 
are treated as quasi-static; this elastic scattering assumption near T, is easily justified 
using time scale arguments. In particular we need to show that the conduction electron 
passes through the spatially restricted region of a critical fluctuation in a time short 
compared to the fluctuation lifetime zfl. In the language of dynamical scaling [lo], 

where 5 is the correlation length, z is the dynamical exponent, a is the lattice spacing, 
and f ( k 0  is a scaling function of 0(1) near T - T, (k --f 0, 5 -, a). Tfl is a 
microscopic fluctuation rate; most likely it will be determined by the dominant phonon 
frequency o - kBT,/h. Here we follow LRA and assume that it is the low-momentum, 
long-wavelength (k --f 0) fluctuations that determine the electronic behaviour. Because 
the critical region at a structural transition is small, e.g. [ l l ] ,  we may use mean field 
results for a theory with a non-conserved order parameter; here z = 2. Therefore for 
ballistic motion the elastic assumption is valid if 

where uF is the Fermi velocity. Equation (1.2) is easily satisfied in the neighbourhood 
of a second-order transition, and is a statement of the ‘thermodynamic slowing down’ 
of long-wavelength critical fluctuations near T,. 

The problem of interest therefore becomes that of an electron scattering from a 
single-body static, fluctuating potential Y ( r )  which, for T > T,, satisfies 

where Vq is the Fourier transform of V ( r ) .  The structure factor S ( q )  is strongly 
peaked at q = 0 (Q = 2k,). Below T, the order parameter < Vq > is finite. We 
shall model S ( q )  by a normalised Ornstein-Zernike function [12]; this is appropriate 
because the critical region is small (e.g., tG - (A/eF)4 - for quasi-one-dimensional 
blue bronze) [3, 41. The correct normalisation for S ( q )  is important so as to ensure 
that the integrated structure factor has a smooth temperature dependance. This was 
pointed out by Kasuya and Kondo [13] in the context of a study of resistivity close 
to a magnetic critical point. In fact it has been noted elsewhere [14] that electronic 
fluctuations at a Peierls transition are strongly reminiscent of transport properties at 
a magnetic critical point, and we will pursue this analogy here. In both phenomena 
‘critical slowing down’ arguments indicate that the electron gas samples the static and 
not the dynamic properties of critical fluctuations near the transition. In the magnetic 
case Fisher and Langer [15] contend that the electron scattering will be dominated by 
short-range fluctuations due to the finite nature of the mean free path; this then leads 
to the elimination of spurious divergences in transport properties. We will incorporate 
this argument into our expression for x ;  it results in an infinite temperature derivative 
[16] (the present paper is an elaboration and extension of this Letter) in the density 
of states at T - T,, a feature that is observed experimentally but does not emerge 



Fluctuation e f e c t s  at a Peierls transition 10069 

from the LRA calculation. This singular behaviour of dX/dT near T, is strongly 
reminiscent of the antiferromagnetic case [17]. However, it is also important to stress 
the distinctions between the magnetic and the Peierls transitions. In antiferromagnetic 
materials the magnetic moments that scatter the electrons are intrinsic to the rare earth 
structure, and therefore one may adequately treat the problem using a first-order Born 
approximation. The situation is somewhat more complicated at a Peierls transition. 
Here multiple scattering events lead to the formation of a gap, and therefore one must 
calculate the Born approximation in a self-consistent fashion. 

We must now return to our earlier justification of the quasi-static assumption; 
it depended on the low-momentum (4) nature of the critical fluctuations. However, 
we have just argued that it is in fact the short-range, high-q ionic fluctuations that 
will determine the electronic behaviour; as 5 + a, ‘sR must remain constant for all 
momenta [ 101 so that the quasi-static approximation is still valid. Strictly speaking, 
only electron-ion energy transfers of the order of the electronic gap A(T = 0) will 
significantly alter our results so that the elastic scattering assumption near T, seems 
acceptable on physical grounds. Experimental justification for this approximation 
comes from inelastic neutron scattering; we require that 6o/A(O) < 1 for T - T, where 
6w is the width of the structure factor S ( q  = 2k,,w - 0).  For blue bronze (K,,Mo03), 
the specific material of interest here, experiments [18] indicate that 6w/A(O) - 
so there is no significant inelastic scattering near the transition. 

It is important to note that we are not presenting a theory for the Peierls instability 
itself, but instead are interested in its effects on the electronic properties of the 
system. The mechanism of the transition appears in our calculations only through 
the structure factor; since the critical region is small we assume a Ginzburg-Landau 
free energy and hence an Ornstein-Zernike S ( q )  ; an alternative structure factor could 
easily be incorporated into our calculations, e.g. see [19]. At present there is no 
microscopic theory for the Peierls T,, since the standard calculation based on the 
Frohlich Hamiltonian neglects phonon entropy effects [20] ; therefore we must take T, 
from experiment. However, we do argue [16] that the static magnetic susceptibility, 1, 
will be dominated by short-range ionic fluctuations at temperatures T N T, and that 
in particular dX/dT will be proportional to the lattice specific heat c v  close to the 
Peierls transition [21]t. These ideas can be applied to electronic systems of one, two 
and three dimensions, and to quasi-one-dimensional systems with impurities. 

Before we continue, let us briefly summarise the main assumptions (see figure 1) 
and results of this paper. Using ‘critical slowing down’ arguments, we treat the 
ionic fluctuations near the Peierls transition as quasi-static and can therefore consider 
electron-ion scattering in the elastic limit near T,. Because the electrons will never 
sample ionic fluctuations with wavelengths longer than their own mean free path 1, 
electronic properties near T, will be dominated by short lengthscale ionic behaviour. 
On dimensional grounds, we then expect x to have an energy-like appearance, and 
in particular dx/dT should be proportional to the lattice specific heat [16]. It is 
important to note that here we are implicitly assuming a hierarchy of lengthscales; 
in particular we assume that the electron samples local not global ionic fluctuations, 
i.e. to < 1 < where I& is the coherence length (to - uF/A) and t is the reduced 
temperature. Detailed calculations of the Pauli susceptibility in one, two and three 

t dx/dt - c y  has been conjectured in TTF-TCNQ for somewhat different reasons in [21]. The authors do not 
support this statement with a detailed calculation, and in particular do not discuss mean free path effects 
which play a central role via the Fisher-Langer argument in our present treatment. 
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dimensions for a model cylindrical Fermi surface yield the following expression : 

dx/dt - (-sgn t)(tl-'!* t + 0 (1.4) 

where t is the reduced temperature. We emphasise that these Peierls systems are 
inherently three dimensional due to their finite transition temperatures; here we refer 
to the dimension d of Fermi surface nesting. Equation (1.4) indicates that for this 
particular Fermi surface geometry it is only coherence length and mean free path 
factors that affect x as a function of dimensionality. It is crucial to note that (1.4) is 
only valid for temperatures It1 > tG, where tG is the Ginzburg temperature. In any case, 
because tG is so small the critical region is irrelevant for comparision to experiment. 
Equation (1.4) implies a diverging dx/dT; ever-present lattice imperfections in realistic 
systems will provide a cut-off to the ionic correlation length leading to a non-diverging 
specific heat and thus to a cusp in dX/dT. Impurity effects are explicitly included in 
our calculations, and we see that they produce a rounding of the dx/dT cusp when 
the true phase transition is destroyed. 

Hierarchy of lengthscaies 

Quasi-elastic scattering 6 w / A ( O ) u l  

Fisher-Longer argument q [ = l - '  

Mean field theory => tG -1  

Figure 1. A summary of the main assumptions used in this paper. 

The layout of this paper is as follows. In $ 2  we perform a calculation for a 
quasi-one-dimensional material similar to that of LRA but we include a finite electronic 
mean free path and focus on the behaviour near a finite T,. We then extend our 
ideas to higher-dimensional compounds, with good agreement with experiment. Most 
systems are strongly affected by disorder, and this is particularly evident in quasi-one- 
dimensional systems. The impurity effect on the Peierls transition is analogous to the 
random field on a continuous spin model [22, 231. The correlation length remains finite 
at the smeared transition, and in § 3 this feature is incorporated into our susceptibility 
calculation. Comparison is then made to experiment with favourable results. We end 
with a summary, and also discuss suggestions for future work. 

2. The susceptibility calculation 

Because we are interested in the temperature dependence of the static susceptiblity 
near a Peierls transition, we now calculate the Pauli contribution to x near T,. The spin 
susceptibility for a non-interacting electron gas scattering from a static potential is 
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where D(w) is the electronic density of states, f(o) is the Fermi-Dirac function, and pB 
and g refer to the Bohr magneton and the Landi g-factor respectively. Physically, the 
static potential preserves the phase coherence of the electronic wavefunctions so that 
the scattered states are linear combinations of eigenstates of the system. All response 
functions can therefore be calculated using a single-particle Green function (this is 
simply an extension of Anderson’s dirty superconductor theorem [24]). In order to 
determine the density of states D(o) in (2.1) we must solve Dyson’s equation for the 
full Green function of the system. As a result of the ‘critical slowing down’ arguments 
given in the Introduction we have reduced our problem to that of solving a Schrodinger 
equation with a static potential that fluctuates in momentum space. We use a standard 
self-consistent Born approximation; symmetry-breaking self-energy diagrams, shown in 
figure 2, must be calculated to all orders to produce a gap at the transition. It is crucial 
to note that this approach is very different to that in the localisation problem; here we 
have a self-energy with strong momentum dependence which will, in particular, affect 
the density of states. Because crossed diagram self-energy contributions are of order 
( A / e F )  they will be neglected in this calculation. Such diagrams would, however, be 
important for the determination of resistivity and other transport properties, e.g. [25], 
and this question will be addressed in a future paper. 

L 

( b )  ( .‘xx‘x‘\) 

Figure 2. Dyson’s equation for the full Green functions with self-energy contributions that 
are (a )  included and ( b )  neglected in the present calculation. 

If we retain coupling only to nearby degenerate states and use the self-consistent 
Born approximation described above, Dyson’s equation becomes 

for temperatures T > T, where ~ ( k )  - ~ ( k  - Q), S ( Q )  is the structure factor defined 
by (1.3) and (VQVQ,) = AeR is the effective gap due to the presence of large thermal 
fluctuations. Because we are in a wide band regime Re is negligible and Im C can 
be approximated by a constant l / z  ; in the standard relaxation time approximation 
l / z  = i+/1 where vF and 1 refer to the Fermi velocity and the electronic mean free path 
respectively. Here we take S ( Q )  to be a normalised Ornstein-Zernike distribution [12] 
centred at Q - 2kF with width IC where K is the inverse correlation length 5 .  This choice 
of structure factor is inherent to a Gaussian model; in short, here we treat thermal 
fluctuations in the harmonic approximation. 

For the highly anisotropic systems of interest we do our calculation with a model 
Fermi surface, shown in figure 3, with cylindrical symmetry. The Peierls gap will 
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20 

30 

U 
Q=ZkF 

Figure 3. Model cylindrical Fermi surface used in the present theory with parameters as 
defined in the text. 

occur in the perfectly nested regions of this surface where there are planes parallel 
in momentum space. We model the ionic structure factor S ( q )  by a normalised 
Ornstein-Zernike function 

where 1 1  and i refer to the axes shown in figure 3, K is the inverse correlation length, 
s( is a dimensional anisotropic parameter, N is a normalisation factor, and 4 = 0 
corresponds to a nesting vector Q = 2k,. A cut-off qo, shown in figure 3, reflects the 
degree of Fermi surface nesting and will be of the order of the inverse lattice spacing 
where details vary according to band structure. Because the Lorenzian structure 
factor is only valid for long-wavelength fluctuations, an additional cut-off qc must be 
introduced to ensure its proper normalisation; then 

P[IC 0 +'x 

If we define q* = min(qc, qo) then the system will be electronically quasi-one dimensional 
for c z q * / K  < 1. 

If the anisotropy is very large, as in the case of the quasi-one-dimensional Peierls 
system K,,MoO, (a - lop4, q* - lo-') [26-291, then unless we are very close to the 
transition we may assume a one-dimensional band structure. In this case the integral 
over Q in (2.2) for T > T, leads to 

G-'(k,w) = G;'(k,cu) - (V;)(Gi'(k-2kF,w) +iv,g-') (2.5) 

and 

where the bands have been linearised near the Fermi surface in the standard fashion. 
Equation (2.6) embodies the crucial fac t  that the electronic mean free path I ,  which 
remains fixed through the Peierls transition, provides a cut-off to the wavelength of 
density fluctuations that scatter electrons; this argument was first pointed out by Fisher 
and Langer [15] in the context of transport properties at a magnetic critical point, and 
was used to explain why no divergences were observed in the resistivity of magnetic 
metals. 
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The electronic density of states is found by integrating Im Gk(w-iB) over wavevector 

where 

(2.7a) 

(2.7b) 

It is important to note that the mean free path 1 enters the calculation through Go, the 
bare electron propagator, and therefore enters twice into the D(o) calculations; this 
accounts for the term 21-' in 7 above. In the limit 1 -+ cc we recover the LRA expression 
[9] ; we will discuss this theory further when we make comparison to experiment, As 
T -+ T:, ti -+ 0 so that close to the transition we may expand the denominator of (2.7a) 
in the standard fashion. Because experimentally 2A(0)/kTC - 6 (here A(0) - ( VQ) and 
AeF - ((V$))"*) [3] thermal averaging effects in x will not be appreciable and x is 
essentially proportional to D(o - O)/Do  ; therefore 

dxldt - -dK/dt - -t-'I2 t -+ o+ (2.8) 

where t is the reduced temperature and K is the inverse correlation length; here we have 
used the Gaussian exponent for ti [12]. According to the Fisher-Langer argument, 
dx/dT should be proportional to c y  ; this is indeed the case in (2.8) for the Gaussian 
model (a = 0.5). 

We now turn to temperatures T < T,; an obvious extension of the method 
already described is to calculate the full Green function G in (2.2) making the simple 
transformation 

s(Q)(vi) * s(Q)( vi - (VQ)~) f d ( Q  = ~ ~ F ) ( V Q ) ~  

dxldt - (-t)-'I2 t -+ 0-. (2.10) 

(2.9) 

which leads to 

We note that in (2.10) dx/dT has the form of a Gaussian specific heat, as expected. 
Before comparing our results with experiment, let us briefly contrast our approach 

with that of an earlier theory developed by Lee, Rice and Anderson (LRA) [9]. Here 
we calculate the magnetic susceptibility of a non-interacting one-dimensional electron 
gas in the presence of a three-dimensional ionic field near a Peierls instability. We take 
advantage of our proximity to a second-order phase transition and model the ionic 
degrees of freedom by a classical, static, momentum-dependent potential; its Fourier 
transform yields a structure factor S ( q )  that is strongly peaked at q = 0 (Q = 2kF). LRA 
have also used this pseudo-gap approach in their calculation, and it is important that we 
emphasise how the two approaches differ. LRA consider a completely one-dimensional 
sytem with finite correlation length l (T)  for T > 0. Using transfer matrix techniques 
[30], LRA determine (( T) and interpret the three-dimensional ordering temperature T,' 
as the temperature where S(T) starts to increase exponentially. Though the LRA theory 
describes several features of x near a Peierls transition-in particular, its smooth form 
through T, and the effect of the density of states gap-it only treats one-dimensional, 
non-critical fluctuations. Close to T, this is not adequate [3] ; specifically the predicted 
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Figure 4. Inverse correlation lengths as defined in text with K - t o t "  and mean field values 
for all exponents. (;AA is taken from [9] and E,,, = K,,, + 1-l where 1 is the electronic 
mean free path (here - 0.08, 1-' = 0.01). 

position of Tc* on the z ( T )  curve does not match well with experiment, and furthermore 
dX/dT does not have a sharp cusp as observed. In our calculation we include Gaussian 
fluctuations in all three dimensions through our structure factor S ( q ) .  Moreover we 
argue that the electronic mean free path 1 provides a natural cut-off to the width of 
S ( q ) ;  the electrons can never sample ionic correlations on lengthscales longer than 1. 

Figure 4 shows the temperature dependence of the correlation lengths used in the 
LRA and in the present theory, e is the effective correlation length that incorporates 
the Fisher-Langer argument, as discussed above. 

Temperature ( K )  

Figure 5. x for Ko3oMo03: theory versus experiment. LRA and experimental points are 
taken from [3]; here is the three-dimensional LRA ordering temperature and T, is the 
transition temperature of the present theory. Inset: dx/dt for K0.30Mo03 : theory versus 
experiment (141). 
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In figure 5 we make a comparision between the LRA and the present theories, 
and experimental results on quasi-one-dimensional blue bronze (K,,MoO,) [3]. In 
our theoretical fit we use the values toeff/So = 2.1 and toe,/l = 1.2, both taken from 
experiment [3, 41. We note that in all the curves here xriO and x ~ , ~  are matched at t = 0 
(T  = T,); this is reasonable since, by the Fisher-Langer argument, x is proportional to 
the lattice energy and therefore must be a smooth function of temperature. We observe 
that the Fisher-Langer argument plays an important role in determining the slope of 
x near T,; this is best seen in the temperature derivative of the susceptibility, as shown 
in the inset of figure 5. There is good agreement between theory and experiment for 
~ ( t , f f / (0 )2 t~  < 1 (teff - l /Aeff);  since 1 - toeff this suggests that the condition 

1/t < 1 (2.1 1) 
where t is the ionic correlation length may be crucial to the validity of the quasi-static 
approximation (for ballistic motion). In general, our theory should be appropriate for 
all quasi-one-dimensional Peierls systems where Coulomb interactions are negligible; 
examples other than KO ,,MOO, include TTF-TCNQ, (TaSe,)I and o-TaSe,. We note 
that for 1 % tOeff,where 1 is the electronic mean free path and tOeff - Au,/Ae, is the 
'effective' zero-temperature coherence length (Aeff - (( V,")) ' I2) ,  the calculated x will 
assume a form similar to that of LRA [9]. 

We would also like to extend the present theory to describe 1 near T, for higher- 
dimensional Peierls compounds. As discussed earlier, structure factor normalisation is 
necessary in order to prevent divergence of the electronic self-energy C integrals; for the 
model cylindrical Fermi surface these normalisation terms ensure that all d-dimensional 
self energies C, are well behaved as T -+ T,(K --f 0). For d = 2 and 3 we calculate C, 
analytically and check that limxq.,K+OCd = C, and that C, is finite as cxq*/ti -+ E .  The 
density of states integrals must be performed numerically, though we can determine 
leading order behaviour analytically as T -+ T, by considering the limits slq*/Ic % 1 
and K -+ 0. We find that for dimensions d = 1,2 and 3 

dx/dt - (-sgn t)ltIp1/* t -+ 0. (2.12) 
Equation (2.12) implies that for this particular Fermi surface geometry it is only 
coherence length and mean free path factors that change dx/dt near T, as a function 
of dimension; theoretical curves for d i /d t  in d = 1,2 and 3 dimensions are shown in 
figure 6. 

Here we assume that 1 and tOeR will be constant as a function of dimensionality; 
then we note that to will be the shortest in ID, in agreement with x-ray measurements 
[31], and that t02D = due to the symmetry of our model Fermi surface. Because, 
to our knowledge, there is no detailed information of Aeff in either K,Cu,S, or 
in CuV,S,, we must simply do theoretical fits for tOeff/t0. The resulting numbers 
(tOeff/t0 - 2.4 and 6.4 for K,Cu,S, and CuV,S, respectively) are certainly within the 
physical parameter range suggested by measurements on blue bronze. Experiments 
[l, 321 indicate that the electronic mean free paths are within a constant of 0(1)  of 
that of blue bronze; our theoretical fits are in agreeement with this (to,,/l - 1.4 and 
1 for K,Cu,S, and CuV2S, respectively). In the inset of figure 6 we compare our 
theoretical results to susceptibility measurements on KO,,Moo3 (1D) [4], K,Cu,S, (2D) 
[l,  331 and CuV,S, (3D) [32, 341 with good agreement. We note that these materials 
have different mean free paths; therefore their behaviour close to T, will be slightly 
different. Again we see that we have good agreement between theory and experiment 
for i(teff/t0)2tl < 1 or identically for 1 < 5 ,  as discussed earlier in this section. It would 
be interesting to specifically test the predicted exponents (2.13) with experiment. 
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-6 -3 0 3 6 
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Figure 6. Theoretical curves for dx/dt versus t in 1, 2 and 3 dimensions. Here 1.35(50)1~ = 

(<0)3D = (50)2D with 2 = I. (d = 2 , 3 )  and leff/l = 1 (see text). Inset: comparison of theory 
and experiment for one, two and three dimensions. 

3. Impurity effects on 

The effect of impurities on a Peierls system is a subject of great interest; here we 
address the question in the context of the Pauli susceptibility. The impurity potential 
couples linearly to the charge density wave (CDW) distortion [35], and long-range order 
cannot be maintained for dimensions d < 4 [22, 231. In a Ginzburg-Landau free 
energy the linear coupling to the impurity potential will result in a renormalisation of 
the transition temperature (T:"P = TPre  - A T )  ; fluctuation calculations beyond the 
mean field treatment show that the impurity concentration is relevant for d < 4 so 
that we call T* (T"  = T,"P) the 'crossover' temperature. In general impurities play an 
important role in charge density wave transport; for example Ong et al have shown 
that the threshold field increases with increasing concentration [36, 371 as predicted by 
Lee and Rice [38]. At the normal-incommensurate 'smeared' transition of the 'dirty' 
system the crossover temperature T' will be depressed from the T, of the pure material; 
also, at some T < T' the correlation length will saturate to a value determined by 
the impurity concentration and the strength of the impurity potential [39]. Recently 
Schneemayer et al [4] have studied the Pauli susceptibility as a function of impurity 
concentration in K0,,Mo03; here we try to model this behaviour at the smeared 
transition and compare with their experimental results. 

As we discussed in the Introduction, the impurity effect on the Peierls transition is 
analogous to the random field on a continuous spin model. We follow the Fukuyama- 
Lee argument [40], analogous to that of Imry-Ma [23] and of Harris [41], to determine 
the relevance of the impurity concentration. Physically the incommensurate wave 
is flexible, and the characteristic linear dimension of the 'domain' Lo will result 
from competition between the energies due to the random potential and to domain 
formation. Strictly speaking there can be no domain formation in a system with 
continuous symmetry; instead there exists a slow continuous variation of the phase on 
a characteristic lengthscale <, the correlation length. Nonetheless the term 'domain' is 
used widely in this context, and we shall do so here. At low temperatures amplitude 
variations are negligible, and thus only elastic energy costs due to phase fluctuations 
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are considered. If we assume that the CDW phase $ varies over a lengthscale L, then by 
the central limit theorem, the impurity potential in each cell has fluctuations of order 
Ld12. The charge density wave can therefore lower its energy by this amount upon 
adjusting its phase. Because we have continuous symmetry the characteristic energy 
associated with phase fluctuations is O(Ld-*); therefore the system will be unstable to 
domain formation if 

d - 2 I d /2 .  (3.1) 
Equation (3.1) may also be derived from a direct calculation of the susceptibility in 
d dimensions [22]. Therefore we see that for d < 4 it is energetically favourable 
for the system to form domains, and there will be no long-range order but only a 
‘smeared’ transition. For the sake of completeness, we should mention that this type 
of argument has been criticised in the closely related random-field Ising model, e.g. 
[42] ; in particular it neglects domain entropy considerations and implicitly assumes 
that all configurations within a ‘typical’ domain are ordered. In the broadest sense, 
(3.1) presents a lower bound for d,, the lower critical dimensionality; therefore for 
Peierls systems of physical interest the impurity concentration will always be a relevant 
variable. As an aside, it is important to note that impurities in a CDW system do not 
play the same role as do magnetic impurities in a conventional BCS superconductor. 
The analogy between these two phenomena is a common mistake is the literature 
and is worthy of comment. Though the mathematical structure of the Peierls theory 
closely follow that of BCS superconductivity the physics of these two systems is quite 
different. In particular, magnetic impurities depress but do not immediately destroy a 
superconducting transition, whereas the impurity concentration is always relevant in a 
Peierls system for dimensions less than four. 

Though impurities destroy long-range order in Peierls systems of physical interest, 
they do lead to local CDW deformations [39] on a lengthscale L, the linear domain size. 
According to the Fisher-Langer argument the electrons will probe spatially restricted 
lattice regions of order the mean free path 2 ;  therefore if I < L the electrons will 
simply ‘see’ a distortion that is non-vanishing as T - T’ and there will be a resulting 
gap in the electronic energy spectrum. As L becomes shorter with increasing impurity 
concentration the electrons will scatter into this local gap and the density of states 
will eventually become constant. L, the saturation value of the correlation length 5 
as T - T”, will be roughly determined by the average inter-impurity distance and 
will also depend on the strength of the impurity potential [39]. In the absence of 
a phase transition the free energy and its derivatives must have no singularities or 
discontinuities at any temperature; therefore for low impurity levels there may be 
temperature variation but not sharp structure in dX/dT. 

In order to determine near T’ in a ‘dirty’ Peierls system, we must use an expression 
for 5 that smoothly saturates to a finite value L for T < T*. Here we have modelled 
K~~~~ the inverse ionic correlation length in the presence of impurities, by an expression 
that is motivated by McMillan’s leading order treatment of impurity fluctuations [39] 

(3.2a) 4 1/2 112 
Klmp - 5,’ {(-t)  + [ ( - t )2  + N I  1 

with 

N = (3.2b) 
and 

t = (T  - T’)/T* ( 3 . 2 ~ )  
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where d refers to the system dimension, x is the impurity concentration and A is an 
input lengthscale determined by the impurity potential. The form (3.2a), shown in 
figure 4, is similar to that of McMillan [39], though we use an intuitive expression for 
K , , ~  = L-’ = N / t o  near T *  as described above?. We note that (3.2b) is also different 
from the inverse Fukuyama-Lee domain length Lo [40], which was calculated for low 
temperatures where amplitude fluctuations are negligible. 

t 

A 

* 
x = o  
x=O.O04 
x=O.O10 
Present theory 

i 

0 0  
120 140 160 180 

Temperature i K )  

Figure 7. dx/dt for Ko3oMol_,W,03. Data points are taken from [4]. 

In figure 7 we show dX/dT versus T for Ko,30MoO3, from both theory and experi- 
ment, for varying impurity concentrations. Here T* must be taken from experiment, as 
there is no existing theory linking McMillan’s Ginzburg-Landau free energy to micro- 
scopic system parameters. We assume that I and to remain constant for low impurity 
levels, and use the experimental values < O e f f / l  = 1.2 as before. Using the volume cell 
dimensions of blue bronze (V = 1359.6 A3) [28] we determine the concentration of 
impurities for a given doping level x. We take A (equation (3.2b)), an input lengthscale 
determined by the impurity potential to be roughly a lattice spacing (A - 4.5 A) [28] ; 
this corresponds to a weak impurity potential. It is important to note that the ‘rounded 
peak’ in the ‘dirty’ d;C/dT occurs at some temperature T < T * ;  this is due to the 
presence of non-vanishing local lattice distortions as T - T*. As expected, dX/dT 
loses its temperature variation with increasing impurity concentration; it would be 
interesting to verify if it flattens out at I - L. 

4. Discussion 

In conclusion, we have presented a theory for the DC magnetic susceptibility at a 
Peierls transition. Using a pseudo-gap approach we incorporate the Fisher-Langer 
argument, borrowed from magnetism, into our calculation and show that the short- 
range ionic fluctuations provide the dominant contribution to near T,. In particular 

t For the present purposes ( 3 . 2 ~ )  is adequate as T + T * -  since Alocal - tiimp (in mean field theory) will 
reach a finite value yielding a ‘rounded peak’ in dx/dt - d/dt(A~ocdl). However, ( 3 . 2 ~ )  will not yield a smooth 
form for through T* as required; for this purpose a higher-order calculation in the impurity fluctuations 
is necessary. 
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the temperature derivative of the static susceptibility, dX/dT, will be proportional to 
the lattice specific heat and will therefore have a cusp at T - T,. Similar reasoning 
can be applied to the nuclear spin relaxation 1/T, and the thermoelectric power 
Q. Comparison with experimental results from blue bronze, a quasi-one-dimensional 
material, yield favourable agreement. We can also extend our treatment of x near T, 
to higher dimensions; here we consider a model cylindrical Fermi surface, and must 
be careful about structure factor normalisation. Good agreement with experiment 
is found for K,Cu,S, (2D) [l] and CuV,S, (3D) [32]. In the last section we treat 
the quasi-one-dimensional system with impurities; now long-range order is destroyed, 
though local lattice distortions may still be present depending on the impurity strength 
and potential. Because dX/dT is proportional to the lattice specific heat it cannot show 
discontinuous behaviour in the absence of a phase transition; this is in agreement with 
experimental observation. It is important to note that all theoretical input parameters 
are in good agreement with physical values. We would like to encourage more accurate 
measurements of dX/dT and c y  on the same Peierls systems; this would provide a 
good test for this theory. 

Naturally there remain many open questions. Future projects include a study of 
resistivity near the Peierls transition where back-scattering effects cannot be neglected, 
e.g. [43]. Though the present theory does extend to several higher-dimensional com- 
pounds the dichalcogenide 2H-TaSe, certainly provides a mystery; its susceptibility has 
a discontinuity near T, [ 5 ] ,  and thus does not have an energy-like appearance. Rice and 
Scott [44] have suggested that saddle points in the band structure may be responsible 
for this anomalous behaviour near the transition. Features of such a star-shaped Fermi 
surface have certainly not been included in our simple cylindrical model. It has also 
been argued that strong electron-ion coupling effects might lead to such discontinu- 
ities in [8, 451; then the electrons could be ‘trapped in the ionic fluctuations and 
electron4ectron interactions could not be neglected. for 2H-TaSe2 bears a striking 
resemblance to that of TTF CuS4C4(CFJ4 a known spin-Peierls system, e.g. [46], and 
this comparison should be pursued. Finally, it would also be interesting to investigate 
the dynamics of these Peierls systems a little bit further from the transition, and in 
particular to learn about how the quasi-static fluctuations become phonons at higher 
temperatures. 
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